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The steady state exothermal hydromagnetic discontinuity 
for an arbitrarily orientated magnetic field 
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An exothermal hydromagnetic discontinuity in a perfectly conducting gas is 
studied for the case of an arbitrarily orientated magnetic field. The evolutionary 
modes and the manner of variation of the physical properties for such pheno- 
mena are determined. The Hugoniot adiabatic is obtained and analysed. 

1. Introduction 
While the phenomenon of MHD shock discontinuities has been extensively 

investigated, the study of exothermal hydromagnetic discontinuities has scarcely 
been touched. In  the near future, it  is expected that this latter phenomenon will 
be of importance in controlled nuclear fusion devices, where a large energy release 
may occur in a hydromagnetic wave under the influence ofa magnetic field. Also 
stellar phenomena, such as the propagation of detonation waves from the interior 
to the surface of a star accompanied by a release of nuclear energy on the wave- 
front, will be described by exothermal hydromagnetic waves. 

Larish & Skekhtmann (1958) initially studied this phenomenon for the special 
case where the magnetic field was parallel to the discontinuity surface and the 
flow velocity was normal to  it. Lyubimov (1959) further considered this problem 
in his stydies of the velocity of the gas at the singular solution for both the 
magnetic and classical cases. This same problem was also investigated numeri- 
cally by Gross, Chinitz & Rivlin (1960) and by Fong, Bollinger & Edse (1961). 
More recently Helliwell(l962) has reformulated this case, repeating the earlier 
work and attempting to take into account a jump in the electrical conductivity 
of the gas across the discontinuity. 

Demutskii & Polovin (1961) have studied exothermic and endothermic dis- 
continuities for the general magneto-fluid-mechanic case of a magnetic field 
applied at an oblique angle with respect to the discontinuity, but under the 
severe restrictions that both the energy released (or absorbed) and the Alfven 
speed is much less than the square of the acoustic velocity. Barmin (1961) per- 
formed similar calculations but he relaxed the restrictions imposed upon the 
magnetic field. 

In  this study we relax both of the severe restrictions in Demutskii & Polovin’s 
work and consider the flow of a perfectly conducting gas with an orientation in 
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which the magnetic field is inclined a t  an arbitrary angle to the normal of the 
surface of discontinuity. 

n 

FIGURE 1. The orientation of the flow model. 

All variables are considered to be dependent functions only of the co-ordinate 
normal to the surface and it will be assumed that all gradients vanish at the 
upstream and downstream conditions. 

2. Governing equations 
At the surface of the discontinuity, the boundary conditions are that the 

conservation laws (mass, momentum and energy) are valid and that the tan- 
gential electric and normal magnetic fields will be continuous. 

These equations may be written in the form: 

[vnpl= 0 = [ml, (1) 

[P +pi + &Hf] = 0, (2) 

[mvt - PHn H,1= 0, (3) 

(4) 

[Hn vt-vn 41 = 0, ( 5 )  

[Hnl = 0,  (6) 

m [ I  + + v i  + +pHf/p - ,uHn H ,  vf/m] = q, 

where the brackets [f] indicate the jump in the quantity f across the disconti- 
nuity, the subscripts n and t respectively refer to the normal and tangential 
components, I is the enthalpy, p is the heat release and the rest of the symbols 
have their usual meaning. 

In  the study of flow discontinuities, it is well known that knowledge of the 
boundary conditions on the discontinuity is not sufficient to determine uniquely 
the physical solutions. Thus in ordinary fluid mechanics the boundary conditions 
include rarefaction shocks as a non-physical solution and it is necessary to 
supplement these boundary conditions with the additional requirement that the 
entropy condition be satisfied. 

In  more complicated systems, such as magnetohydrodynamic discontinuities, 
rarefaction shocks are also disregarded since they violate the Second Law; 
however, while the entropy condition is necessary it is no longer sugcient for 
selecting which compressive shocks are physically relevant from the solutions 
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satisfying the boundary conditions (Jeffery & Taniuti 1964; Akhiezer, Liubarskii 
& Polovin 1959; Polovin 1961). 

The selection principle for obtaining the physically relevant solutions will be, 
what the literature has termed, the evolutionary condition. It is a stability 
criterion. 

Following Jeffery & Taniuti, this condition may be stated in the following 
convenient form : 

A discontinuity is evolutionary if and only i f  the number of small amplitude out- 
going waves diverging from the discontinuity is equul to the number of independent 
boundary conditions. 

3. Possible modes 
Applying the evolutionary condition to the present problem, the possible 

modes of exothermal waves may be determined. For an exothermal hydro- 
magnetic shock-type discontinuity, the number of independent boundary condi- 
tions is one less than the actual boundary conditions, while for a deflagration- 
type discontinuity the independent and actual boundary conditions are the 
same. This is because the speed of propagation of a deflagration wave does not 
depend upon the amplitude of the wave, as it  does for a shock-type discontinuity. 
Hence, in order to be evolutionary, the number of outgoing waves must equal 
six for a MHD exothermic shock-wave and seven for a MHD deflagration wave. 

"2 
I 

, 

3 + 1 + 6 = 1 0  3 + 1 + 5 = 9  2 + 1 + 5 = 8  = 2 + 1 + 4 = 7  
, 

I I I 

I 2+1+5=8 Fi 1+1+4=6 I 1+1+3=5 1 

cfl 

FIUURE 2. The number of diverging waves for the various r6gimes. 
12-2 



180 Lawrence A.  Kennedy 

For this flow configuration, there is the possibility of sixteen different regimes 
resulting from the existence of three velocities of propagation of small distur- 
bances, the AIfvh velocity A and the fast and slow magneto-acoustic velocities 
Cf, Cs. These quantities may be shown to satisfy the inequality Cf 2 An, a 2 C,, 
where the equality holds if the transverse component of the magnetic field is zero. 

The number of diverging waves for the various regimes were calculated and 
are shown on the familiar (K, %)-plane (figure 2). Here the first number equals 
the number of Alfv6n waves, the second equals the number of entropy waves and 
the third is the total number of fast and slow waves. The dotted line indicates 
points where the density is continuous, i.e. vnl = vn2. 

At first it  appears that there are three possible modes for exothermic shock 
waves, however, in computing the number of diverging waves it is necessary not 
only to carry out this procedure for the aggregate of the variables but it must also 
be performed for any subgroup of these variables. When this is done, the regime 
Cf, > vnl > A,1, An* > vnz > Cs, is no Ionger found to be evolutionary and is con- 
tracted to the point ‘ A ’ denoting an AIfv6n type discontinuity. 

Using figure 2 ,  it is then immediately apparent that in magneto-fluid-mechanics 
there are two possible modes for exothermic shock waves: 

( a )  Fast exothermic shocks 

vnl > cfl, cfz > vnZ > Anz* (7a) 

An1 > vnl > csl¶ cs2 > Vn,. (7 b)  

( b )  Slow exothermic shocks 

These are indicated in figure 2 by the cross-hatched shading. In  addition, there 
are four possible modes for MHD deflagration waves: 

(a) Fast deflagration 
Vn1 > Cf,, Vn, > Cf,* ( 8 4  

Cfl > vnl > An1, Cfz > urnz > An,. ( 8 b )  

An1 > urn1 > An, > vnz > Csz* (8c) 

( b )  Super-Alfvh deflagration 

(c) Sub-Alfvh deflagration 

(d )  Slow deflagration 
Csl > vn17 Cs, > vn,* 

The horizontal shading in figure 2 indicates these modes. Finally, there is the 
possibility of a mode corresponding to the point ‘ A ’ :  

Rotational combustion 
vn1 = vnZ = A .  (9) 

These are to be contrasted with the single exothermic shock mode (detonation) 
and the two deflagration modes (subsonic and supersonic combustion) which 
arise in combustion theory in the absence of magnetic fields. 
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4. Rotational combustion 
Since the rotational combustion mode appears to arise as an exceptional case, 

it will be considered separately from the rest. From (9) the criterion for this mode 
is that 

There are two possible cases by which this criterion may be satisfied: (a )  m = 0, 
and ( b )  m =t= 0, [p ]  = 0. 

It is immediately apparent that the case m = 0 is a trivial solution since there 
can be no heating a t  either a contact surface or a tangential discontinuity. The 
only motion of material is parallel to the discontinuity surface and since there 
must be an influx of reacting substances for a reaction to exist, this case cannot 
represent any type of exothermic wave. 

However, case ( b )  offers a possible combustion mode unique to MHD. Since 
the mass flux is continuous, we have 

vml = vn, = A .  

m + 0, [v,] = 0, [PI = 0. (10) 

Eliminating [vJ between (3) and (5) gives 

vnl = on2 = (PHYP)', 

vt, - vtutl = (P/P)& (Tt2 - Tt, 1. 

2 1 - iIU( t ,  t,) 

"1 + m/p[P + BPH3 + t"vt - ( P / P ) W 2 I  = 4. 

(11) 

which is the velocity of propagation of this wave. Alternately, eliminating Hn 
in these equations results in the expression 

(12) 

As a consequence of ( lo) ,  (2) reduces to 

(13) p - p  - _ _  H2 -H2 . 
Using the relation I = U +  P/p, the energy equation may be written for this case 

(14) 
in the form 

The third term is zero from (12), while the second vanishes due to (13). Then using 
the perfect-gas relation U = P/(y - l ) p ,  (14) becomes 

(4 -P1) = (Y - 1) P1 rrim. (15) 

Since the downstream conditions of H and v are determined from (13), it  is 
seen that the direction of the outgoing quantities v,, H, are indeterminate. This 
may be interpreted physically to mean that there is a whole family of compatible 
solutions for H,, v, and they trace out a regular cone about the normal to the 
discontinuity. 

This is very similar to the usual MHD rotational discontinuity in the sense 
that the magnetic field and velocity may be rotated through an arbitrary angle 
about the normal; however, in the present case, there are now discontinuities in 
the pressure and the tangential components of both the flow velocity and the 
magnetic field due to the heat release. It follows from (15), (13) and (12) that the 
magnitude of P is increased while the magnitude of both v and H are decreased 
in passing across this wave. For a fixed value of H, and v,, H, and v, lie on the 
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surface of a circular cone as shown in figure 3; the angle formed by the generatrix 
of this cone with the normal will always be different from that between the 
normal and H, except for the case q = 0, when both angles become equal. 

1' 

Jz 
FIGURE 3. 

The characteristic property of this mode is that in addition to changing the 
magnitude of the variables, the fluid may acquire tangential momentum of 
arbitrary direction on passage through the exothermal discontinuity; therefore 
the motion is not planar. 

Also for a given value of H, and vl, it is seen from (13) and (15) that there is a 
limit to the allowable heat release corresponding to 

For q greater than this value, this mode has no physical significance, 

5. Oblique combustion modes 
Consider now the more interesting type of exothermal discontinuity which is 

characterized by a discontinuity in both density and normal velocity, i.e. 

m * 0, [PI * 0, [%I * 0- (16) 

For these 'oblique ' discontinuities, Friedrichs & Kranzer (1958) have shown that 
a frame of reference may always be introduced such that the flow velocity v and 
the magnetic field H are parallel on both sides of the discontinuity surface. 

It is desired to determine the manner in which the flow variables are altered 
across these discontinuities. From the tangential-momentum and electric-field 
equations (3) and (5 ) ,  the tangential velocity is easily eliminated giving the 
relation 

From the information gained in determining the evolutionary modes for the 
waves under discussion, it is possible to draw the conclusion that Ht, 2 0 
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(assuming Hfl > 0). This results from the fact that the sign of the quantity 
( v i  -A;)  is the same on either side of the discontinuity for any of the evolutionary 
modes and noting that pl/pz 2 0. However, it  is still impossible to determine 
whether HI increases or decreases across the wave since the magnitude of both the 
denominator and numerator remain unknown. Therefore another expression is 
required in order to determine the manner of the field variation. 

Using the first equality of (17), it  is possible, after some algebraic manipulation, 
to  obtain the following expression for the difference between the upstream and 
downstream magnetic field 

The sign of the denominator is given by the evolutionary conditions for the 
wave under consideration. Since it is known from (17) that Ht, > 0, it is now 
possible to determine qualitatively whether Ht increases or decreases once the 
density ratio is known. For the exothermic shock modes this is easily accom- 
plished. In  figure 2 the dotted line gave the locus of points where p1 = pz,  i.e. 
vnl = v,,. Below this line vn1 > v,, and thus processes occurring in these regimes 
are compressive. Similarly, above this line, vnl < v,, and the processes are of a 
rarefaction nature. 

Therefore, it  follows from figure 2 that the two possible modes of MHD 
exothermic shock waves are compressive in nature. Next, using the inequalities 
(7 a )  and (7 b )  along with (18) yields the results that the magnetic field increases 
across a fast exothermic shock wave and decreases across a slow exothermic 
shock wave. 

Unfortunately this method of determining the manner of variation of the 
magnetic field breaks down for deflagration processes since the information 
obtainable from figure 2 allows any of the MHD deflagration modes to be com- 
patible with either a compression or rarefaction process. 

6. MHD combustion adiabatic 
In  order to obtain more complete knowledge of the manner in which the 

dependent variables are altered in these evolutionary modes, the MHD com- 
bustion adiabatic was required. Its calcuIation was most easily performed using 
it method developed for shocks (Anderson 1963). 

Making use of the relations P = paz/y and I = az/(y - l), the governing 
equations may be rewritten in the form 

P I V n l  = P ~ v n ,  = m, 

P1 a?/r + P I  V i 1  + wel = P2 a3Y + Pz vie  + &/aB’ 
mvtl - PHn 4, = mvt2 - PHn Hit, 

= at / (y-  1) + & ~ 2 n ,  + 

( 1’) 

(2‘) 

(3’) 

(4’) 

(5‘) 

(6’) 

~ Y ( Y -  1) + +ui l  + M, + (~Ht,/m) (Vn, qT - *tl H n )  + Q  

+ (pq,/m) ( O n 2  H -vt Hn), 

Hn vtl - on1 4, = Hn 81, - H,,, 
Hnl = Hn, = H,. 
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Eliminating the tangential velocity from (3') and (5')  and dividing the result by 
H, gives the dimensionless equation for Ht 

where ai is the angle between the magnetic field and normal to the discontinuity. 
Alternately, eliminating Ht from (3') and (5 ' )  yields 

The normal momentum equation (2')  may be made dimensionless by dividing i t  
with H i .  Then using (19) to eliminate tan a2 in the resulting equation yields 

where the following dimensionless group have been used: 

7 = p2/pl, Ki = vii /Aii ,  Ai = at/Aii (i= 1,2). 

Next the energy equation is put in dimensionless form on dividing it by the 
square of the downstream Alfven velocity Aiz. After eliminating the tangential 
velocity and magnetic field components using (19) and ( Z O ) ,  we obtain 

where 
equation in K,  as a function of the parameters 7, A,, 0, y and a,, 

= p/Aal. Eliminating A, between these two equations results in a cubic 

This is a general expression for K, in terms of an arbitrary heat release and 
magnetic field. The roots of K, are readily obtained and give the velocity with 
which the wave moves into the cold gas. In  (24) it is seen that there are two 
singularities, corresponding to 7 = ( y+  l)/(y - 1) and 7 = 1, which are also 
familiar singularities in the non-magnetic theory. At both points K ,  must 
approach infinity. The point 7 = (y + l)/(y - 1) corresponds to maximum com- 
pression while 7 = 1 corresponds to the limiting case of constant volume 
detonation. 

Once K,  is known as a function of the parameters 7, A, Q, y and al, it  is then 
possible to determine the total pressure ratio Pt/PT. Equation (2 ' )  is made 
dimensionless by dividing by H: giving 
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After expanding the left-hand side of this equation, one obtains 

2 -  - 2yK,('- 1/71 
Pf ' + 2A, + y tan2a,' 

Substitution of the roots of (24) for K,, then gives the combustion adiabatic 
(Hugoniot curve) in the (P*, .r)-plane. Figure 4 is a sketch of a typical adiabatic. 
The interesting point of the MHD combustion adiabatic is that it has multiple 
branches. Additionally it appears that only on one of these branches is it possible 
to reach large final pressures. This may be substantiated using (24) and noting 
that in order to reach large final pressures K, a 7. Then neglecting small terms, 
(24) reduces to  

Thus it is seen that two of the roots vanish, indicating the existence of only one 
branch for large final pressures. It is shown in the next section that this upper 
branch of the curve corresponds to the 'fast ' branch. 

7 .  71 

F I G ~ E  4. The MHD exothermal adiabatic in the (P", .r)-plane F-D-A-B-C-E corresponds 
to the fast branch, E'-D'-A'-B'-C'-S corresponds to the slow branch. 

7. Properties of the MHD combustion adiabatic 
We now wish to determine some of the properties of this curve. Draw vertical 

and horizontal lines 1A'A and 1BB' to the adiabatic. It is easily seen that the 
portion of the curve lying between either AB or A'B' (dotted) has no physical 
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significance. On this section Pz > P?, r2 > r,, and therefore the expression for 
the mass flux obtained from ( 2 )  m2 = [(PZ - P ; ) / ( T ~  - r2)]  is imaginary. 

Next draw straight lines through the initial point (PT, 7,) tangent to the 
Hugoniot. This locates points D, D' and C, C' on the branches of the adiabatic. 
Hence for each of the points of tangency the following relation is valid 

dP* Pz* - P: 
d r  r2-7, ' 
-- -- 

where r = l/p, the specific volume. 
In  the following discussion, it will be convenient to have the Hugoniot 

expressed in a form different from that used in the previous section. Eliminating 
the tangential velocity and mass in the governing equations (1) to (6) it  follows 
directly that the Hugoniot function $(P, 7) may be expressed as 

$.(%72) = U(P2972)- u(P, ,~J+l i (pz-PJ (72-71)  

+ N4, - &,I2 (72 - 71) - q, (28) 

where state 2 is considered variable. Differentiating (28) and dropping the 
subscript 2 for the present gives 

d$(P,T) = dU(P,7) +&(7-71)dP+$(P-p1)dT 

+ &(q- ql) (7 -71) d q  + $(f4-f41)2d7. 

Substituting the thermodynamic relation d U = TdX - Pdr into this equation 
and combining terms results in 

d$(P,r) = TdS++(r-r , )dP*-$(P*- P;")dr 
+ g ( H ~ - f 4 H , 1 ) d r - - ( T - r 7 1 ) q l d f 4 .  (29) 

Differentiating equations (2) and (17), substituting the result into (29) and 
making use of the definition of tana,, and K,, it immediately follows that the 
Hugoniot function may be expressed in the following useful form: 

tan2 ctl 
d*((P*,7) = Tds+- 1 +  ) [ (T  - T ~ )  dP* - (P* - 3';) dr].  (30) ( (1-K,T/r,)2 

Substituting (27) into this equationit is seen that $and S both have an extremum 
at the same points and by definition of the points of tangency it follows that 

a?/? = as = 0. 

Hence there is a stationary value of entropy at the inflexion point on the Hugoniot 
curve. 

At the points of tangency 

Expanding the differential dP* as a function of 7 and S ,  substituting this expres- 
sion into the preceding equation, collecting terms, dividing by ( ~ ~ - 7 )  and 
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multiplying by r2, we obtain 

At the points of tangency dX/dr = 0, hence (32 )  reduces to 

Using (17) to evaluate the second term and noting that 

u2 = - r2  (g) A2, = ,uH2,r, A! = pHB7, A:+A2 = A2, 
S' 

this becomes 
(341 

which is the familiar equation for the fast and slow magneto-acoustic speeds. 
Hence at the points of tangency, the burnt gas moves with these speeds. It 
remains to identify on which branch does which speed occur. 

Recalling that the fast and slow speeds obey the inequality C, > A,  > C,, it 
then follows that of the four tangency points, the ones determined by the chord 
(m2 = const.) with the largest negative slope in the compression and expansion 
regions correspond to the fast branch. Thus the portion of the curve given by 
F-D-A-B-C-E is the 'fast' branch while that given by El-D'-A'-B-C'-X is 
the 'slow' branch. To determine whether the tangency points on each branch 
correspond to a maximum or minimum value of entropy, differentiate (31) with 
respect to r .  This gives 

vnUna 4 - vzZ(ai + A;) + A2,* a: = (v:, - CFz) (v:, - CZJ = 0, 

K ,  tan2 01, 
rl( 1 - K17/7,)3' 

+ (P* - P;)] do +L ( (7,-7)= dP* - (P* - PT) 
dr , T 

Since d T / d r  and (K1/rl )  tan2a1(l -Klr/r,)3 both remain finite (the second 
expression becomes infinite at r -r l ,  but this point has already been excluded 
from the present discussion) and the quantity 

dP* 
dr  

(7,-r)-+(P*--P?) = 0, 

the above expression reduces to 

d2X 1 tan2 01, 
~ = - ( 1 +  
dr2 2T (1 -K,r/r)2 

Now, provided d2P*/dr2 > 0, we obtain the following: 

r2 < r,, 
r2  > T,, 

d2S/dr2 > 0, 
d2X/dr2 < 0, 

i.e. a minimum at D and D'. 
i.e. a maximum a t  C and C'. 
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Hence on a given branch of the Hugoniot above D(D’) and below C(Cr) we have 
dX2/dr2 < 0 while between these points dS2/dr2 > 0. 

It remains to prove tha,t d2P*/dr2 > 0. Along a given branch, a chord 
(mz = const.) drawn through PT, r1 with a negative slope slightly greater than 
the tangent condition a t  D(D‘1 intersects the branch in two places. This implies 
a minimum at the point of tangency, i.e. dzP*/dr2 > 0. In  a similar manner this 
may also be shown for C(C‘). Once it is known how dX1d.r varies, it follows 
immediately from (32) that for r < rl, vn2 < Ci, above the tangency point D(D‘) 
and unz > Ci, below it, while for r > 71, vn2 > Ciq beyond the tangency point C(C’) 
and un2 < Ci, to the left of it. Here Ci refers to either Cf or C, depending on which 
branch is being considered. 

Finally, the upstream velocity for the various portions of the curve may be 
determined from a simple graphical argument. The velocity of sound in the 
unburnt gas is given by the slope of the tangent to the shock adiabatic while vnl 
is given by the chord (m2 = const.). Since all of the chords are steeper than their 
corresponding tangents to the shock adiabatic, for 7 < 71 we obtain vnl > Cfl and 
onl > CSl on their respective branches. In  a similar manner for 7 > r1 we get 
vnl < Cfl, vnl < C,, on their respective branches. Since it is now known how 
P*/PT andpl/p2 vary for each of the evolutionary modes, the manner in which the 
magnetic field changes may be determined using (1  8). Additionally knowing how 
p2/p1 varies allows the manner of variation in the gas pressure PJP, to be resolved. 

Prom figure 4 it is known that the density and total pressure increases in fast 
and sub-Alfvhn deflagration and decreases in super-Alfven and slow deflagration. 
Hence the magnetic field increases across a fast and slow deflagration and 
decreases across a super- and sub-Alfvh deflagration. From the foregoing it 
then follows that the gas pressure increases in fast and sub-Alfven deflagration, 
decreases in slow deflagration and may do either in the super-AIfv6n mode. 

The manner of variation of the dependent variables for a MHD exothermic 
shock wave was previously determined utilizing figure 2. 

8. Discussion 
A general expression for an arbitrary magnetic field and heat release was 

derived for the MHD combustion adiabatic. The resulting curve was third order 
and gave rise to two separate evolutionary branches, a ‘fast’ and ‘slow’ branch. 
Along these two branches, the evolutionary combustion modes consisting of two 
MHD exothermic shock regimes and four deflagration regimes were located. It 
was found that the tangents to each of these branches corresponded to having the 
burnt gases moving with the ‘fast ’ and ‘slow ’ magneto-acoustic speeds. On the 
compression portions of these two branches, the points, of tangency were found 
to be points of minimum entropy, while on the rarefaction portions the tangency 
points corresponded to points of maximum entropy. 

From the adiabatic it was seen that both the density and the total pressure 
increased in fast and sub-Alfven deflagration modes and decreased in super- 
Alfven and slow deflagration modes. Additionally, it was learned that the 
magnetic field increases across the fast and slow deflagration wave and decreases 
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across the super- and sub-Alfv8n deflagration waves. For the two MHD exo- 
thermic shock modes, the total pressure and density increases upon passing 
through the waves while the magnetic field increases across the fast detonation 
wave and decreases across the slow detonation mode, It appeared from study- 
ing the roots of the combustion adiabatic that only the fast branch exists for 
large pressures. 

The other combustion mode studied in this investigation was rotational 
combustion. This unique MHD combustion mode exists with no change in density 
across the wave and has the unusual feature that the gas mass acquires tangential 
momentum of arbitrary direction on passage through this discontinuity while 
undergoing a jump in the magnitude of the velocity and magnetic field. 

The author is indebted to Prof. Ali Bulent Cambel for suggesting this problem 
and to the NorthwesternUniversity Computing Center for providing computation 
services. 
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